The Shared Area method Like convolution, but <u>different</u>

Supervisors Richard Dendy & Sandra Chapman

Motivation

Ion cyclotron emission (ICE) at integer harmonics of energetic minority $(n\Omega_{\alpha})^*$

WARW

*Adapted from G. A. Cottrell et al., Nuclear Fusion, vol. 33, pp. 1365–1387, Sept. 1993

Theory

Convolution

Curve 1

$$Conv(x) = \int_{X} f(x)g(x - \Delta x) \ d(\Delta x)$$
Curve 2
(flipped+offset)

- Simple
- Faster (<u>Alternatives / X-Corr</u>)
- More widely known

Shared area

- Reliable against noise (<u>Applications / X-Offsets</u>)
- Novel
- N-dimensional (<u>Applications / Higher dimensions</u>)

Method

warwic

Applications

SCALE

Offsets (Υ^{Y} , $\mapsto X$)

Smoothing

Higher dimensions

Applications / Scale

Applications / Y-Offsets

WARWICI

9

Applications / Smoothing

Applications / Higher dimensions

1D:
$$SA(\Delta x) = \int_X dx \left[B_f(\Delta x, x) f(x) + B_g(\Delta x, x) g(x - \Delta x) \right]$$

$$2\mathbf{D}: \quad SA(\Delta x, \Delta y) = \int_X \int_Y dx \, dy \left[B_f(\Delta x, \Delta y, x, y) f(x, y) + B_g(\Delta x, \Delta y, x, y) g(x - \Delta x, y - \Delta y) \right]$$

ND:
$$SA(\Delta) = \int_{\mathcal{R}^N} d^N r [B_f(\Delta, r) f(r) + B_g(\Delta, r) g(r - \Delta)]$$

Offset vector
Position vector

Alternatives

1D Cross correlation (X-Corr)

2D Phase correlation (PC)

Alternatives / X-Corr

- Two curves $(l_1 \text{ and } l_2)$ with random noise
- Number of data points 10^N
- Three methods
 - > Shared-area (SA)
 - > Cross-correlation (X-Corr)
 - > NumPy X-Corr (npCorr)
- NumPy optimised, performs better across all data lengths
- SA falls short throughout, noticeable at <u>extremely</u> large datasets

Alternatives / Phase correlation (PC)

Phase correlation: Used to measure translation offsets between two similar datasets

 $m_{2}(x,y) = m_{1}(x - \Delta x, y - \Delta y)$ $\mathcal{F}[m_{2}(a,b)] = \mathcal{F}[m_{1}(a,b)] \cdot \exp\left[-2\pi i \left(\frac{a\Delta x}{N_{x}} + \frac{b\Delta y}{N_{y}}\right)\right]$ $r = \mathcal{F}^{-1}\left[\frac{\mathcal{F}(m_{1}) \odot \mathcal{F}^{*}(m_{2})}{|\mathcal{F}(m_{1}) \odot \mathcal{F}^{*}(m_{2})|}\right] = \delta(x + \Delta x, y + \Delta y)$ Assume images same but shifted

FT would give same, but with phase offset

Normalise, take inverse FT, gives Dirac delta at $(\Delta x, \Delta y)$

Examples

ICE Power spectra

Helioseismology

Financial data

Examples / Power spectra

- Spectra shifts, use multiple methods to find shift (Motivation)

Examples / Helioseismology

Helps find mass and radius of stars

FFT of our Sun's Doppler velocities from the GOLF satellite (total time = 30 days)

Example Gaussian curve (**red**) -Shared area curve (**black**) $f_{max} = 3265 \mu \text{Hz}$ Fitted exponential to *all* data (green) $f_{max} = 3509 \mu \text{Hz}$

Actual $f_{max} = 3261 \pm 4 \; (\mu \text{Hz})^*$

Room to improve; vis-à-vis shared area model curve

> *Howe, R. et al. 2020. Solar cycle variation of vmax in helioseismic data and its implications for asteroseismology. MNRAS, 493(1), pp.L49-L53.

Examples / Financial data

- Data from 1st March 2007 to 1st March 2016
- Auto SA removed (stock^(0,0) × stock^(0,0))
- Row (*i*) represents sliding SA curve over column (*j*), reflected plots would reveal inverse time lags
- Normalised SA between 0 and 1 (measure of "correlation" between stock prices)

Thank you for listening