The Shared Area method Like convolution, but different

Supervisors Richard Dendy & Sandra Chapman

Motivation

Ion cyclotron emission (ICE) at integer harmonics of energetic minority $(n\Omega_{\alpha})^*$

NA

*Adapted from G. A. Cottrell *et al., Nuclear Fusion*, vol. 33, pp. 1365–1387, Sept. 1993

Theory

Convolution Shared area

Curve 1

\n
$$
\begin{aligned}\n\text{Conv}(x) &= \int_X f(x)g(x - \Delta x) \ d(\Delta x) \\
\text{Curve 2} \\
(\text{flipped-offset})\n\end{aligned}
$$

- Simple
- Faster [\(Alternatives / X-Corr](#page-11-0))
- More widely known

- Reliable against noise [\(Applications / X-Offsets\)](#page-7-0)
- Novel
- N-dimensional [\(Applications / Higher dimensions\)](#page-9-0)

Method

WARWICK

The Company

Applications

SCALE

Offsets $(1^Y, \mapsto X)$

Smoothing

Higher dimensions

Applications / Scale

Applications / Y-Offsets

WARWICK

9

Applications / Smoothing

Applications / Higher dimensions

1D: SA(
$$
\Delta x
$$
) = $\int_X dx [B_f(\Delta x, x) f(x) + B_g(\Delta x, x) g(x - \Delta x)]$

$$
2\mathbf{D}: SA(\Delta x, \Delta y) = \iint_X dx dy \left[B_f(\Delta x, \Delta y, x, y) f(x, y) + B_g(\Delta x, \Delta y, x, y) g(x - \Delta x, y - \Delta y) \right]
$$

$$
\mathbf{ND}: \quad \mathrm{SA}(\Delta) = \int_{\mathcal{R}^N} d^N r [B_f(\Delta, r) f(r) + B_g(\Delta, r) g(r - \Delta)]
$$
\n
$$
\int \text{Offset vector}
$$
\n
$$
\text{Position vector}
$$

Alternatives

1D Cross correlation (X-Corr)

2D Phase correlation (PC)

Alternatives / X-Corr

- Two curves $(l_1 \text{ and } l_2)$ with random noise
- Number of data points 10^N
- Three methods
	- > Shared-area (SA)
	- > Cross-correlation (X-Corr)
	- > NumPy X-Corr (npCorr)
- NumPy optimised, performs better across all data lengths
- SA falls short throughout, noticeable at extremely large datasets

Alternatives / Phase correlation (PC)

Phase correlation: Used to measure translation offsets between two similar datasets

$$
m_2(x, y) = m_1(x - \Delta x, y - \Delta y)
$$

$$
\mathcal{F}[m_2(a, b)] = \mathcal{F}[m_1(a, b)] \cdot \exp\left[-2\pi i \left(\frac{a\Delta x}{N_x} + \frac{b\Delta y}{N_y}\right)\right]
$$

$$
r = \mathcal{F}^{-1}\left[\frac{\mathcal{F}(m_1) \bigcirc \mathcal{F}^*(m_2)}{|\mathcal{F}(m_1) \bigcirc \mathcal{F}^*(m_2)|}\right] = \delta(x + \Delta x, y + \Delta y)
$$

Assume images same but shifted

FT would give same, but with phase offset

Normalise, take inverse FT, gives Dirac delta at (Ax, Ay)

Examples

ICE Power spectra

Helioseismology

Financial data

Examples / Power spectra

- Spectra shifts, use multiple methods to find shift ([Motivation\)](#page-1-0)

Examples / Helioseismology

Helps find mass and radius of stars

FFT of our Sun's Doppler velocities from the GOLF satellite (total time $=$ 30 days)

Example Gaussian curve (**red**) S hared area curve (**black**) $f_{max} = 3265 \mu \text{Hz}$ Fitted exponential to *all* data (green) $f_{max} = 3509 \mu$ Hz

Actual $f_{max} = 3261 \pm 4 \text{ (µHz)}^*$

Room to improve; vis-à-vis shared area model curve

> *Howe, R. et al. 2020. *Solar cycle variation of νmax in helioseismic data and its implications for asteroseismology*. MNRAS, 493(1), pp.L49-L53.

Examples / Financial data

- Data from 1st March 2007 to 1st March 2016
- Auto SA removed (stock $(0,0) \times stock(0,0)$)
- Row (i) represents sliding SA curve over column (j) , reflected plots would reveal inverse time lags
- Normalised SA between 0 and 1 (measure of "correlation" between stock prices)

Thank you for listening