The consequences of trittum mix for
simulated ion cyclotron emission spectra
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What 1s Ion Cyclotron Emission (ICE)?

* Strongly suprathermal emission and highly spectrally structured ICRF
signal spontaneously emitted from most large MCF plasmas

* Driven by energetic ion populations: fusion-born in deuterium and
deutertum-trittum (DT) plasmas, also NBI and occasionally ICRH

* Spectral peaks at local cyclotron harmonics of energetic ion population

* Driven by the magnetoacoustic cyclotron instability (MCI)
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Fig. 1 ICE power spectrum, recreated from [1]. Peaks seen at integer
deuteron ion harmonics, for a cyclotron frequency of 17MHz.
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Why do we measure ICE?

* By understanding ICE physics, we can use ICE measurements to infer
features ot the energetic 1on distribution

* Passive and non-intrusive

* Scaled linearly with fusion reactivity in JE'T

* Observed at various poloidal angles around tokamak

* ICE frequency ranges are typical of antennae already used in tokamaks

Experimental setup

* ICE is observed from most large MCF plasmas, including JET tokamak
2], F1g.2 , and LHD heliotron-stellarator [3], Fig. 3

* DT fusion reaction considered: ' + * —_— ‘(B.SMeV) + @

* Thermal bulk (background) ions (electrons) T ¢ ~keV
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Fig. 2 The general tokamak
layout, adapted from [4], with
the poloidal (0) and toroidal (¢)
magnetic  fields as labelled.
Poloidal field generated from :

Fig. 3 The layout of the LHD stellarator
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Simulation setup & Trittum ion concentration

* 1D3V PIC code EPOCH [5] self consistently evolves Maxwell-Lorentz
system of equations

* 3.5MeV a-particle distributed as ring-beam, eq. (1), where L & || are
w.r.t magnetic field B, component
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* Particle volumes held equal according to the numerical weighting, eq.

(2), to remove linear heating across all species, indexed o,
nO'
— = const )

SO
* General parameters of the JET 26148 plasma: n, = 101%m™3; B, =
2.1T ; B2k =89°; T;, = 1keV ; ny/n, =2 x 1073
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Power spectra & Frequency offsets

Using the spatiotemporal Fourier transform of the oscillatory field
component, AB,, we integrate over a range of wavenumbers, k, to return the
power spectra as a function of frequency, Fig. 4. There are noticeable ICE
peaks in all primary traces and a noticeable shifting of the dominant region
(16<w/Qp<21) as triton concentration increases.

Using various correlation methods including the cross-correlation, phase-
correlation and shared area we defined this frequency shift by a linear relation
Ww.r.t trittum concentration:

Worr/Qp= (-4.74 £0.34) §7 + (-0.01 £ 0.16) | ©

Frequency shifts are described as the preferential driving of lower energy
waves for heavier, more inertial, plasmas. Best fitting simulated spectra to
those in Fig. 11is that of the 11% case, according to a T* fitting method [6].

. . . . Fig. 5 Power spectra frequency offset as a function of tritium
Fig. 4 Power spectra of varying triton concentrations as per legend. & Wer sp 9 Y
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Energy densities & Three-ion species gyro-resonance
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Conclusions

* First principles simulations of ICE spectra with trittum concentrations in
the range 0% to 50% show best agreement with JET 26148 ICE when
concentration = 11%, which coincides with the actual experimental value

* Preferential driving of shorter and slower plasma waves

* An increase in the magnitude of energy transfer from the alpha-particles
to the DT bulk through slower growing MCI

* Frequency offset following a linear relation w.t.t 7, eq. (3)

* Gyro-resonance between DT species, Fig. (7)
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