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Motivation
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Neutrons irradiate tokamak wall (expensive, dangerous, inefficient)
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if neutrons==None:

 count=None

Need measurement which scales with reactivity, but doesn’t require 

neutrons

Introducing… ICE



Ion cyclotron emission (ICE)

• Suprathermal emission visible at 

multiple ion harmonics

• Driven by the MCI, caused by strong 

gradients in an energetic minority’s 

velocity-space distribution

• Measurement is passive, non-intrusive 

and multi-angled 
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Ion cyclotron emission (ICE)

Scales with:

• Minority concentration (𝜉𝑚𝑖𝑛)

• Fusion reactivity

• 𝑣0⊥/𝑣𝐴 ratio

• Pitch-angle (𝜙)

• Fuel ratio (𝜉2/𝜉1)**

• Magnetic field angle (𝜃)

* G. A. Cottrell et al., 1993 Nuclear Fusion, vol. 33, pp. 1365–1387

* * T.W. Slade-Harajda et al., 2024 Nucl. Fusion

* 



Ion cyclotron emission (ICE)

* Caldas I L et al. 1996 Chaos Solitons and Fractals 7 991–1010

* * G. A. Cottrell et al., 1993 Nuclear Fusion, vol. 33, pp. 1365–1387

ICE spectra observed from JET plasma 26148 **, 

spacing of 17MHz between peaks.
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Magnetoacoustic Cyclotron Instability (MCI)

1975 1992 Today

Brought on by “a small quantity of 

thermonuclear reaction products in a 

plasma” which are “sufficient to 

excite magnetoacoustic cyclotron 

waves” *

“resonation excitation of perpendicular 

fast Alfvén waves with ion Bernstein 

waves” which was “driven by the 

energetic products of fusion reactions” **

MCI is characterised by the 

cyclotron resonance between the 

FAW (in the bulk) and an energetic 

minority ion (alphas)

* V. S. Belikov and Y. I. Kolesnichenko, 1975 Sov. Phys. - Tech. Phys., vol. 20:9

* * R. O. Dendy et al. 1992 Physics of Fluids B: Plasma Physics, vol. 4, pp. 3996–4006

Simulations ramp-up
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Magnetoacoustic Cyclotron Instability (MCI)

* McClements K G et al., 1996 Physics of Plasmas 3 543–53

* * J W S Cook 2022 Plasma Phys. Control. Fusion 64 115002

Linear theory * New LMV solver **



Simulations (PIC)

* T. D. Arber et al., 2015 Plasma Physics and Controlled Fusion, vol. 57, p. 113001
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Use of the particle-in-cell (PIC) code EPOCH *

• Distribute particles with quasi-neutral densities 𝑛𝜎

• Angle magnetic field 𝜃 to simulation domain

• Shape functions infer fields to the particles

• Push particles, update velocities and fields

• Rinse and repeat



Simulations (PIC)

• Inclusion of tertiary ion (e.g. tritium, helium-3, boron-11)

• Number density weighting (NDW) conserved

• Ran for simulations using 0 < 𝜉𝐻𝑒3 ≤ 0.45

• Using JET like initial conditions for protons *

• Pure deuterium (0%), “realistic” case (22%)* and limit (45%)

𝐍𝐃𝐖 =
𝑛𝜎

𝑁𝜎
= 𝑐𝑜𝑛𝑠𝑡.

* Kiptily V G et al., 2022 Plasma Phys. Control. Fusion 64 064001



Results : Energy

• Exponential growth of 

energies (MCI 

characteristic)

• As 𝜉𝐻𝑒3 ↑, energy gained 

increases

• Deepening of energy lost 

by protons as 𝜉𝐻𝑒3 ↑

• 𝐸𝑥 grows faster than 𝐵𝑧 

(ES rather than EM?)



Results : Gyro-resonance.1

Derived from first principles
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Results : Gyro-resonance.11
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Rearranged expression to plot vs. time

• Used two methods to determine 

Δ𝑟𝐿1
2 /Δ𝑟𝐿2

2  ratio

• Change in enclosed magnetic flux is 

equal for both species

Hovers around 1 

throughout

Blips around time of 

changeover between 

MCI regimes



Results : Gyro-resonance.111
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Results : Fourier transforms

• ICE grows strongly for 𝜔 < 10Ω𝑝

• Spatiotemporal Fourier 

transforms in 2d (𝑘, 𝜔) space 

reveal Doppler shift

• Can predict Doppler shift using

𝜔𝑛
′ = 𝑛Ω𝑝 – 𝑘𝑢𝑝 cos 𝜃 cos 𝜙

𝜃 = Magnetic field angle

𝜙 = Proton pitch-angle tan 𝜙 =
𝑢⊥0

𝑢∥0

𝑢𝑝 = Proton birth velocity



Results : Power spectra (𝝎)

𝑘𝑣𝐴/Ω𝑝

𝜔/Ω𝑝

Traditional power – “Horizontal” scan

• Messy peaks, no clear excitation on 𝑛Ω𝑝

• Most excited MCI region peaks around 17Ω𝑝

• Shift in frequencies following ↑ 𝜉𝐻𝑒3



Results : Power spectra (𝝎′)

𝑘𝑣𝐴/Ω𝑝

𝜔/Ω𝑝

Doppler power – “Diagonal” scan

𝜃𝑑𝑜𝑝

• Emissions peak neatly on 𝜔𝑛
′ /Ω𝑝 = 𝑛

• Frequency shift dependency on 𝜉𝐻𝑒3 removed

• Most excited modes seen at higher relative frequency



Summary

• ICE is generated in D-He3 fusion plasmas

• Concentration of He3 effects total energisation, according to gyro-

resonant condition

• Change in flux enclosed by both majority ions Larmor radii is equal

• Power spectra can be computed relative to particle frequency 𝜔′

• Doppler power spectra necessary for high energy particles



Future work

Development of LMV

p-B11 simulations

LMV results

Effective ions?
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