Influence on ion cyclotron emission from PIC simulations of aneutronic D-He3 plasmas and 14.68 MeV protons

Tobias Slade-Harajda Prof. R Dendy and Prof. S Chapman

Engineering and Physical Sciences Research Council

JROfusion

- Motivation
- Ion cyclotron emission (ICE)
- Magnetoacoustic cyclotron instability (MCI)
- Simulating the fusion plasma (PIC code)
- Results
- Summary & Future work

Motivation

Ion cyclotron emission (ICE)

 Suprathermal emission visible at multiple ion harmonics

- Driven by the MCI, caused by strong gradients in an energetic minority's velocity-space distribution
- Measurement is passive, non-intrusive and multi-angled

$$\Omega_{\sigma} \equiv \omega_{c\sigma} = \frac{q_{\sigma}B}{m_{\sigma}}$$
$$n\Omega_{\alpha} \forall n \in \mathbb{Z}^{+}$$

Ion cyclotron emission (ICE)

Scales with:

- Minority concentration (ξ_{min})
- Fusion reactivity
- $v_{0\perp}/v_A$ ratio
- Pitch-angle (ϕ)
- Fuel ratio $(\xi_2/\xi_1)^{**}$
- Magnetic field angle (θ)

FIG. 5. Correlation between ICE intensity P_{ICE} and total neutron emission rate R_{NT} for Ohmic and NBI heated JET discharges, over six decades of signal intensity. The best fitting relation is $P_{ICE} \propto R_{NT}^{0.9\pm0.1}$.

> * G. A. Cottrell et al., 1993 Nuclear Fusion, vol. 33, pp. 1365–1387 * * T.W. Slade-Harajda et al., 2024 Nucl. Fusion

Ion cyclotron emission (ICE)

Location of ICE in tokamak inferred from spacing between peaks

$$B(r) = \frac{\Omega m}{Ze}$$

$$B_{\theta}^{(0)}(r) = \frac{\mu_0 I_P}{2\pi r} \left(1 - \left[1 - \left(\frac{r}{a} \right)^2 \right]^{\gamma} \Theta(a - r) \right) *$$

ICE spectra observed from JET plasma 26148 **, spacing of 17MHz between peaks.

* Caldas I L et al. 1996 Chaos Solitons and Fractals **7** 991–1010 ** G. A. Cottrell et al., 1993 Nuclear Fusion, vol. 33, pp. 1365–1387

Magnetoacoustic Cyclotron Instability (MCI)

Brought on by "a small quantity of thermonuclear reaction products in a plasma" which are "sufficient to excite magnetoacoustic cyclotron waves" * "resonation excitation of perpendicular fast Alfvén waves with ion Bernstein waves" which was "driven by the energetic products of fusion reactions" ** MCI is characterised by the cyclotron resonance between the FAW (in the bulk) and an energetic minority ion (alphas)

Magnetoacoustic Cyclotron Instability (MCI)

** J W S Cook 2022 Plasma Phys. Control. Fusion 64 115002

Simulations (PIC)

- Distribute particles with quasi-neutral densities n_σ
- Angle magnetic field $\boldsymbol{\theta}$ to simulation domain
- Shape functions infer fields to the particles
- Push particles, update velocities and fields
- Rinse and repeat

 T_i

Simulations (PIC)

- Inclusion of tertiary ion (e.g. tritium, *helium-3*, boron-11)
- Number density weighting (NDW) conserved

$$\mathbf{NDW} = \frac{n_{\sigma}}{N_{\sigma}} = const.$$

- Ran for simulations using $0 < \xi_{He3} \le 0.45$
- Using JET like initial conditions for protons *
- Pure deuterium (0%), "realistic" case (22%)* and limit (45%)

Results : Energy

Results : Gyro-resonance. I

Derived from first principles $\frac{\Delta u_1}{\Delta u_2} = \frac{n_1 \Delta E_1}{n_2 \Delta E_2}$

$$\Rightarrow \frac{n_1 m_1}{n_2 m_2} \left(\frac{\Delta v_{\perp 1}^2 + \Delta v_{\parallel 1}^2}{\Delta v_{\perp 2}^2 + \Delta v_{\parallel 2}^2} \right)$$

$$\Rightarrow \frac{n_1 m_2}{n_2 m_1} \left(\frac{q_1}{q_2}\right)^2 \left(\frac{\Delta r_{L1}^2}{\Delta r_{L2}^2}\right)$$

Results : Gyro-resonance. I I I

Results : Fourier transforms

- ICE grows strongly for $\omega < 10 \Omega_p$
- Spatiotemporal Fourier
 transforms in 2d (k, ω) space
 reveal Doppler shift
 - Can predict Doppler shift using $\omega'_n = n\Omega_p - ku_p \cos\theta \cos\phi$
 - θ = Magnetic field angle

•

$$\phi$$
 = Proton pitch-angle $\left[\tan \phi = \frac{u_{\perp 0}}{u_{\parallel 0}} \right]$
 u_p = Proton birth velocity

Results : Power spectra (\omega)

- Most excited MCI region peaks around $17\Omega_p$
- Shift in frequencies following $\uparrow \xi_{He3}$

Results : Power spectra (\omega')

- Frequency shift dependency on ξ_{He3} removed
- Most excited modes seen at higher relative frequency

- ICE is generated in D-He3 fusion plasmas
- Concentration of He3 effects total energisation, according to gyroresonant condition
- Change in flux enclosed by both majority ions Larmor radii is equal
- Power spectra can be computed relative to particle frequency ω'
- Doppler power spectra necessary for high energy particles

Future work

Thank you for listening

<u>Many thanks to:</u> Prof. Richard Dendy, Prof. Sandra Chapman, Dr. James Cook & Omstavan Samant