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1. Introduction
= lon cyclotron emission (ICE)
= Magnetoacoustic cyclotron instability (MCI)

2. Simulation setup
= Particle-in-cell (PIC) code EPOCH
= Simulations

3. Results
= Energy densities
= Power spectra
= Frequency offsets

4. Summary



Location of resonance inferred from magnetic
field strength from the ion harmonic spacing,
B(r) =mQ/q

® Suprathermal emission visible at multiple
ion harmonics 60

® Driven by the MCI, brought on by strong Qp=17MHz
gradients in energetic minority
(alpha-particles) velocity-space

distribution
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® Measurement is passive, non-intrusive
and multi-angled
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Figure: Power spectra, adapted from [1]
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Magnetoacoustic Cyclotron Instability (MCI):

1976 - Brought on by “a small quantity of thermonuclear reaction products in a plasma” which
are “sufficient to excite magnetoacoustic cyclotron waves” [2]

1992 - Inclusion of ion cyclotron emission, “resonation excitation of perpendicular fast Alfvén
waves with ion Bernstein waves” which was “driven by the energetic products of fusion
reactions” [3]

Today - Now, MCl is defined as a velocity-space instability, characterised by the cyclotron
resonance between the FAW (in the bulk) and an energetic minority ion (alphas)
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EFOCH

® particle-in-cell (PIC) code EPOCH [4] : =

® Self-consistently evolves the kinetics of P X % b e
particles and EM fields under the
Maxwell-Lorentz system of equations

Figure: Zeroth and first order shape functions with a
cell width Ax, and pseudo-particle located at X; in
® Third order shape-function cell X,

® Pseudo/macro-particles
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® JET plasma 26148 parameters
no =10"m=3, B, =2.41T, T;, = 1keV, B/k = 89°

® Introduced & parameter (tritium concentration)

Ng
Co Ny
® Ppure deuteron (0%) trace tritium (1%) JET 26148 plasma (11%) and near future high

concentration ITER (50%)

® Conserved Number Density Weighting: | NDW =

® Supplementary simulations of 5%, 18% and 30%
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Figure: Change in kinetic energy densities (Au) for (left-to-right) deuterons, tritons and alphas. Units
given in keVm™3 and triton concentration as in right-hand figure legend

e Linear MCI growth is lesser with increased ¢

e Energy transfer at & = 50% between D-T is almost equivalent to their mass ratios
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Gyro-resonance between deuterons
(D) and tritons (T) results in a trending
in the change in their energy density
ratios to their inverse mass ratio
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108

— 50% T,

ér > o leads to shift in
power spectra

105 1

104 L

a ® Shape is “conserved”
£ ® Peaks are less
intense/defined with

increased &7

102}
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® How to quantify this
0 5 10 15 2 2 frequency shift?
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Frequency offset: w5 (<{T)
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‘ Wo (¢7)/Qp = (—4.74 £ 0.34)ér + (0.01 + 0.16) ‘ ()

1.0 T T T T
— Cross-correlation

Peak trend
— Shared area i
Phase-correlation

S 0> Roughly shows that for a 20%

% -0 increase of tritium, power spectral

3 -15 features shift down in frequency by a
-2.0 whole deuteron harmonic
-2.5
=% 0.1 0.2 0.3 04 05
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® Rate of energisation (de-energisation) of deuterons (alphas) is slowed with increasing &7

® Ratio between energisation of D-T plasma equivalent to their mass ratios due to Larmor
radii matching (gyro-resonance)

® Power spectra is shifted in frequency, approximately quantified by a negative linear
correlation w.rt ér, eq. (2)

® JET plasma 26148 is best represented by the 11% simulation

Despite the two ion representation working well to describe the power spectra of
multi-component plasmas, simulation of three ions is a necessity for admixtures greater than a
few percent, especially when considering near future ITER cases (> 50%)
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Any questions?
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